Question	Scheme	Marks	AOs
1	$(x-3)^2 + y^2 = \left(\frac{t^2+5}{t^2+1} - 3\right)^2 + \left(\frac{4t}{t^2+1}\right)^2$	M1	3.1a
	$=\frac{\left(2-2t^2\right)^2+16t^2}{\left(t^2+1\right)^2}=\frac{4+8t^2+4t^4}{\left(t^2+1\right)^2}$	dM1	1.1b
	$\frac{4(t^4 + 2t^2 + 1)}{(t^2 + 1)^2} = \frac{4(t^2 + 1)^2}{(t^2 + 1)^2} = 4*$	A1*	2.1
		(3)	

M1: Attempts to substitute the given parametric forms into the Cartesian equation or the lhs of the Cartesian equation. There may have been an (incorrect) attempt to multiply out the $(x-3)^2$ term. dM1: Attempts to combine (at least the lhs) using correct processing into a single fraction, multiplies out and collects terms on the numerator.

A1*: Fully correct proof showing all key steps

Question	Scheme	Marks	AOs		
Alt	$x = \frac{t^2 + 5}{t^2 + 1} \Rightarrow xt^2 + x = t^2 + 5 \Rightarrow t^2 = \frac{5 - x}{x - 1}$ $y = \frac{4t}{t^2 + 1} \Rightarrow y^2 = \frac{16t^2}{\left(t^2 + 1\right)^2} = \frac{16\left(\frac{5 - x}{x - 1}\right)}{\left(\frac{5 - x}{x - 1} + 1\right)^2}$	M1	3.1a		
	$y^{2} = \frac{16\left(\frac{5-x}{x-1}\right)}{\left(\frac{5-x}{x-1}+1\right)^{2}} = 16\left(\frac{5-x}{x-1}\right) \times \left(\frac{(x-1)}{5-x+x-1}\right)^{2} \Rightarrow y^{2} = (5-x)(x-1)$	dM1	1.1b		
	$y^{2} = (5-x)(x-1) \Rightarrow y^{2} = 6x - x^{2} - 5$ $\Rightarrow y^{2} = 4 - (x-3)^{2} \text{ or other intermediate step}$	A1*	2.1		
	$\Rightarrow (x-3)^2 + y^2 = 4*$				
		(3)			
(3 marks)					
Notes					

M1: Adopts a correct strategy for eliminating t to obtain an equation in terms of x and y only. See scheme.

Other methods exist which also lead to an appropriate equation. E.g using $t = \frac{y}{x-1}$

dM1: Uses correct processing to eliminate the fractions and start to simplify

A1*: Fully correct proof showing all key steps

Question	Scheme	Marks	AOs		
2(a) Way 1	$x = (t+3)^2 - 25$	M1	1.1b		
	$\Rightarrow x + 25 = (t+3)^2 \Rightarrow (x+25)^{\frac{1}{2}} = (t+3) \Rightarrow y = \dots$	M1	2.1		
	$y = 6 \ln(x + 25)^{\frac{1}{2}} \Rightarrow y = 3 \ln(x + 25)$	A1cso	1.1b		
		(3)			
	(a) Way 2				
	$y = 6 \ln(t+3) = 3 \ln(t+3)^2$	M1	1.1b		
	$y = 3\ln(t+3)^2 = 3\ln(t^2+6t+9) = 3\ln(x+16+9)$	M1	2.1		
	$y = 3\ln(x + 25)$	A1cso	1.1b		
	(a) Way 3				
	$y = 6\ln(t+3) \Rightarrow \frac{y}{6} = \ln(t+3) \Rightarrow t+3 = e^{\frac{y}{6}} \Rightarrow t = e^{\frac{y}{6}} - 3$	M1	1.1b		
	$x = \left(e^{\frac{y}{6}} - 3\right)^{2} + 6\left(e^{\frac{y}{6}} - 3\right) - 16 \Rightarrow y = \dots$ or $x = \left(e^{\frac{y}{6}} - 3 + 8\right)\left(e^{\frac{y}{6}} - 3 - 2\right) \Rightarrow y = \dots$	M1	2.1		
	$y = 3\ln(x + 25)$	A1cso	1.1b		
	(a) Way 4				
	$x = (t+3)^2 - 25$	M1	1.1b		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\frac{\mathrm{d}y}{\mathrm{d}t}}{\frac{\mathrm{d}x}{\mathrm{d}t}} = \frac{\left(\frac{6}{t+3}\right)}{2t+6} \Rightarrow \frac{3}{\left(t+3\right)^2} = \frac{3}{x+25} \Rightarrow y = 3\ln\left(x+25\right)(+c)$	M1	2.1		
	e.g. $t = 0 \Rightarrow x = -16$, $y = 6\ln 3 \Rightarrow 6\ln 3 = 3\ln(9) \Rightarrow c = 0$ $y = 3\ln(x + 25)$	A1cso	1.1b		
(b)	$x = 0$, $y = 3 \ln 25$ oe e.g. $6 \ln 5$	B1ft	2.2a		
	$\frac{dy}{dx} = \frac{3}{x + "25"} \Rightarrow \frac{dy}{dx} = \frac{3}{0 + "25"} \left(= \frac{3}{25} \right)$ $\frac{dy}{dt} = \frac{\left(\frac{6}{t+3}\right)}{2t+6} \Rightarrow \frac{\frac{6}{2+3}}{2 \times 2+6} \left(= \frac{6}{50} = \frac{3}{25} \right)$	M1	2.1		
	$y - "3 \ln 25" = "\frac{3}{25}"(x\{-0\})$	dM1	3.1a		
	$25y - 3x = 150 \ln 5$	A1	2.2a		
		(4)			
Notes (7					
Notes Choose the mark scheme that best matches their chosen method.					
Choose the mark scheme that best matches their chosen method.					

(a) Way 1

M1: Attempts to complete the square. Award for sight of $x = (t+3)^2 \pm ...$ where ... $\neq 0$

M1: Rearranges their $x = (t+3)^2 - 25$ to either (t+3) = ... or $(t+3)^2 = ...$ and then substitutes correctly their expression into the parametric equation for y. So e.g., $t = \sqrt{x+25} - 3 \rightarrow y = 6 \ln(\sqrt{x+25} - 3)$ is M0.

A1cso: $y = 3 \ln(x + 25)$ including brackets with all stages of working shown. The "y =" must appear at some point.

Way 2

M1: Attempts to use the power rule for logarithms $y = 6 \ln(t+3) = ... \ln(t+3)^2$ where ... $\neq 6$

M1: Writes $y = 6 \ln(t+3)$ as $3 \ln(t+3)^2$ and then multiplies out and substitutes correctly in for t to obtain a Cartesian equation for C

A1cso: $y = 3 \ln(x + 25)$ including brackets with all stages of working shown. The "y =" must appear at some point.

Way 3

M1: Attempts to make t the subject for $y = 6 \ln(t+3)$ to obtain $t = e^{\frac{y}{6}} \pm \dots$ where $\dots \neq 0$

M1: Substitutes $t = e^{f(y)} \pm ...$ correctly into $x = t^2 + 6t - 16$ and rearranges to make y the subject.

A1cso: $y = 3\ln(x + 25)$ including brackets with all stages of working shown. The "y =" must appear at some point.

Way 4

M1: Attempts to complete the square. Award for sight of $x = (t+3)^2 \pm ...$ where $... \neq 0$

M1: Attempts to find $\frac{dy}{dx}$ where $\frac{dy}{dx} = \frac{\left(\frac{\dots}{t+3}\right)}{at+b}$, $a,b \ne 0$ and uses the completed square form to find $\frac{dy}{dx}$ in terms of x and then integrates to obtain a Cartesian equation for C

A1cso: A complete method using any correct point on the curve to show that c = 0 and obtain $y = 3\ln(x + 25)$ with all stages of working shown. The "y =" must appear at some point.

Note that a common incorrect approach in (a) is:

$$x = t^2 + 6t - 16 = (t - 2)(t + 8) \Rightarrow x = t - 2 \Rightarrow t = x + 2 \Rightarrow y = 6\ln(x + 5)$$

which scores no marks.

(b)

B1ft: Deduces $y = 3 \ln 25$ oe e.g $y = 6 \ln 5$ but allow follow through on their Cartesian equation with x = 0 and apply isw after a correct value or ft value for y

M1: Attempts to find $\frac{dy}{dx}$ when x = 0 so score for obtaining $\frac{dy}{dx} = \frac{...}{x + "25"}$ and substituting in x = 0

Allow this mark if they use the letters A and B e.g. $\frac{dy}{dx} = \frac{\dots}{x+B} = \frac{\dots}{0+B}$ or allow a "made up" A and B.

Ol

Attempts to find $\frac{dy}{dx}$ when t=2 by finding $\frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\left(\frac{6}{t+3}\right)}{2t+6} \Rightarrow \frac{\frac{6}{5}}{2\times 2+6} \left(=\frac{6}{50} = \frac{3}{25}\right)$

For the derivative look for $\frac{dy}{dx} = \frac{\left(\frac{\dots}{t+3}\right)}{at+b}$ oe e.g. $\left(\frac{\dots}{t+3}\right) \times \frac{1}{at+b} \ a, b \neq 0$

NOTE if candidates find $\frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\left(\frac{6}{t+3}\right)}{2t+6} = \frac{6(2t+6)}{t+3} = 12$ we will give BOD that t = 2 has been used unless

there is clear evidence that t = 2 has not been used.

dM1: Attempts to find the equation of the tangent. Score for sight of $y - "3 \ln 25" = "\frac{3}{25}" (x\{-0\})$ or if they use y = mx + c they must proceed as far as c = ... It is dependent on the previous method mark. Must have numeric A and B now.

A1: $25y - 3x = 150 \ln 5$ or any integer multiple of this equation in the form $ax + by = c \ln 5$